Home
  • 计算机网络
  • 操作系统
  • 数据结构与算法
  • 设计模式
  • JavaSE
  • JVM
  • JUC
  • Netty
  • CPP
  • QT
  • UE
  • Go
  • Gin
  • Gorm
  • HTML
  • CSS
  • JavaScript
  • vue2
  • TypeScript
  • vue3
  • react
  • Spring
  • SpringMVC
  • Mybatis
  • SpringBoot
  • SpringSecurity
  • SpringCloud
  • Mysql
  • Redis
  • 消息中间件
  • RPC
  • 分布式锁
  • 分布式事务
  • 个人博客
  • 弹幕视频平台
  • API网关
  • 售票系统
  • 消息推送平台
  • SaaS短链接系统
  • Linux
  • Docker
  • Git
GitHub (opens new window)
Home
  • 计算机网络
  • 操作系统
  • 数据结构与算法
  • 设计模式
  • JavaSE
  • JVM
  • JUC
  • Netty
  • CPP
  • QT
  • UE
  • Go
  • Gin
  • Gorm
  • HTML
  • CSS
  • JavaScript
  • vue2
  • TypeScript
  • vue3
  • react
  • Spring
  • SpringMVC
  • Mybatis
  • SpringBoot
  • SpringSecurity
  • SpringCloud
  • Mysql
  • Redis
  • 消息中间件
  • RPC
  • 分布式锁
  • 分布式事务
  • 个人博客
  • 弹幕视频平台
  • API网关
  • 售票系统
  • 消息推送平台
  • SaaS短链接系统
  • Linux
  • Docker
  • Git
GitHub (opens new window)
  • SQL编程50题
  • 基础篇
  • 索引篇
  • 事务篇
  • 锁篇
  • 日志篇
  • 高可用篇
  • 分库分表
  • 性能优化
    • 执行频率
    • 慢日志查询
    • profile
    • explain
    • sql优化
      • 大批量插入
      • update优化
      • limit优化
      • order by优化
      • count优化
  • Mysql
Nreal
2024-03-11
目录

性能优化

# 执行频率

查看当前数据库的 INSERT, UPDATE, DELETE, SELECT 访问频次:

-- 7个_
SHOW GLOBAL STATUS LIKE 'Com_______';
-- 或者 
SHOW SESSION STATUS LIKE 'Com_______';

1
2
3
4
5

# 慢日志查询

慢查询日志记录了所有执行时间超过指定参数(long_query_time,单位:秒,默认10秒)的所有SQL语句的日志。

MySQL的慢查询日志默认没有开启,需要在MySQL的配置文件(/etc/my.cnf)中配置如下信息:

# 开启慢查询日志开关
slow_query_log=1
# 设置慢查询日志的时间为2秒,SQL语句执行时间超过2秒,就会视为慢查询,记录慢查询日志
long_query_time=2
1
2
3
4

更改后记得重启MySQL服务,日志文件位置:/var/lib/mysql/localhost-slow.log

查看慢查询日志开关状态:show variables like 'slow_query_log';

# profile

show profile 能在做SQL优化时帮我们了解时间都耗费在哪里。

-- 通过 have_profiling 参数,能看到当前 MySQL 是否支持 profile 操作:
SELECT @@have_profiling;
-- profiling 默认关闭,可以通过set语句在session/global级别开启 profiling:
SET profiling = 1;
1
2
3
4

查看所有语句的耗时:show profiles; 查看指定query_id的SQL语句各个阶段的耗时:show profile for query query_id; 查看指定query_id的SQL语句CPU的使用情况:show profile cpu for query query_id;

# explain

EXPLAIN 或者 DESC 命令获取 MySQL 如何执行 SELECT 语句的信息,包括在 SELECT 语句执行过程中表如何连接和连接的顺序;

# 直接在select语句之前加上关键字 explain / desc
EXPLAIN SELECT 字段列表 FROM 表名 HWERE 条件;
1
2

各字段含义:

  • id:select 查询的序列号,表示查询中执行 select 子句或者操作表的顺序(id相同,执行顺序从上到下;id不同,值越大越先执行)
  • select_type:表示 SELECT 的类型,常见取值有 SIMPLE(简单表,即不适用表连接或者子查询)、PRIMARY(主查询,即外层的查询)、UNION(UNION中的第二个或者后面的查询语句)、SUBQUERY(SELECT/WHERE之后包含了子查询)等
  • type:表示连接类型,性能由好到差的连接类型为 NULL、system、const(主键)、eq_ref、ref(非唯一索引)、range、index、all
  • possible_key:可能应用在这张表上的索引,一个或多个
  • Key:实际使用的索引,如果为 NULL,则没有使用索引
  • Key_len:表示索引中使用的字节数,该值为索引字段最大可能长度,并非实际使用长度,在不损失精确性的前提下,长度越短越好
  • rows:MySQL认为必须要执行的行数,在InnoDB引擎的表中,是一个估计值,可能并不总是准确的
  • filtered:表示返回结果的行数占需读取行数的百分比,filtered的值越大越好

# sql优化

# 大批量插入

如果一次性需要插入大批量数据,使用insert语句插入性能较低,此时可以使用MySQL数据库提供的load指令插入。

# 客户端连接服务端时,加上参数 --local-infile(这一行在bash/cmd界面输入)
mysql --local-infile -u root -p
# 设置全局参数local_infile为1,开启从本地加载文件导入数据的开关
set global local_infile = 1;
select @@local_infile;
# 执行load指令将准备好的数据,加载到表结构中
load data local infile '/root/sql1.log' into table 'tb_user' fields terminated by ',' lines terminated by '\n';
1
2
3
4
5
6
7

# update优化

InnoDB 的行锁是针对索引加的锁,不是针对记录加的锁,并且该索引不能失效,否则会从行锁升级为表锁;

如以下两条语句: update student set no = '123' where id = 1;,这句由于id有主键索引,所以只会锁这一行; update student set no = '123' where name = 'test';,这句由于name没有索引,所以会把整张表都锁住进行数据更新,解决方法是给name字段添加索引;

# limit优化

常见的问题:limit 2000000, 10,此时需要 MySQL 排序前2000000条记录,但仅仅返回2000000 - 2000010的记录,其他记录丢弃,查询排序的代价非常大。

优化方案:一般分页查询时,通过创建覆盖索引能够比较好地提高性能,可以通过覆盖索引加子查询形式进行优化;

-- 此语句耗时很长
select * from tb_sku limit 9000000, 10;
1
2

limit分页offset越深,性能越差!

mysql耗费大量随机IO在回表查询聚簇索引的数据上,而且这么多回表查询数据不会出现在结果集中;

连表查询优化:

-- 通过连表查询即可实现第一句的效果,并且能达到第二句的速度
select * from tb_sku as s, (select id from tb_sku order by id limit 9000000, 10) as a where s.id = a.id;
1
2

在索引上拿到聚簇索引的主键ID,省去回表;

在需要查询的字段上创建覆盖索引,再叶子节点判断主键id是否相等,这样可以减少多次回表操作;

# order by优化

  1. Using filesort:通过表的索引或全表扫描,读取满足条件的数据行,然后在排序缓冲区 sort buffer 中完成排序操作,所有不是通过索引直接返回排序结果的排序都叫 FileSort 排序
  2. Using index:通过有序索引顺序扫描直接返回有序数据,这种情况即为 using index,不需要额外排序,操作效率高

如果order by字段全部使用升序排序或者降序排序,则都会走索引,但是如果一个字段升序排序,另一个字段降序排序,则不会走索引,explain的extra信息显示的是Using index, Using filesort,如果要优化掉Using filesort,则需要另外再创建一个索引,如:create index idx_user_age_phone_ad on tb_user(age asc, phone desc);

# count优化

MyISAM 引擎把一个表的总行数存在了磁盘上,因此执行 count() 的时候会直接返回这个数,效率很高(前提是不适用where); InnoDB 在执行 count() 时,需要把数据一行一行地从引擎里面读出来,然后累计计数。 优化方案:自己计数,如创建key-value表存储在内存或硬盘,或者是用redis;

各种用法的性能:

  • count(主键):InnoDB引擎会遍历整张表,把每行的主键id值都取出来,返回给服务层,服务层拿到主键后,直接按行进行累加(主键不可能为空)
  • count(字段):没有not null约束的话,InnoDB引擎会遍历整张表把每一行的字段值都取出来,返回给服务层,服务层判断是否为null,不为null,计数累加;有not null约束的话,InnoDB引擎会遍历整张表把每一行的字段值都取出来,返回给服务层,直接按行进行累加
  • count(1):InnoDB 引擎遍历整张表,但不取值。服务层对于返回的每一层,放一个数字 1 进去,直接按行进行累加
  • count(*):InnoDB 引擎并不会把全部字段取出来,而是专门做了优化,不取值,服务层直接按行进行累加

按效率排序:count(字段) < count(主键) < count(1) < count(*)

count(1) 相比 count(主键字段) 少一个步骤,就是不需要读取记录中的字段值;

count(*) 其实等于 count(0)

分库分表

← 分库分表

Theme by Vdoing | Copyright © 2021-2024
  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式