ConcurrentHashMap
# ConcurrentHashMap 1.8
# 线程安全实现方式
CAS+synchronized,只锁定当前链表或红黑树首节点;
# put流程
根据 key 计算出 hashcode 。
判断是否需要进行初始化。
即为当前 key 定位出的 Node,如果为空表示当前位置可以写入数据,利用 CAS 尝试写入,失败则自旋保证成功。
如果当前位置的
hashcode == MOVED == -1
,则需要进行扩容。如果都不满足,则利用 synchronized 锁写入数据。
如果数量大于
TREEIFY_THRESHOLD
则要执行树化方法,在treeifyBin
中会首先判断当前数组长度 ≥64 时才会将链表转换为红黑树。
public V put(K key, V value) {
return putVal(key, value, false);
}
final V putVal(K key, V value, boolean onlyIfAbsent) {
// key和value都不能为null
if (key == null || value == null) throw new NullPointerException();
// 计算hash值
int hash = spread(key.hashCode());
int binCount = 0;
for (Node<K,V>[] tab = table;;) {
Node<K,V> f; int n, i, fh;
if (tab == null || (n = tab.length) == 0)
// 如果tab未初始化或者个数为0,则初始化node数组
tab = initTable();
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
if (casTabAt(tab, i, null,
new Node<K,V>(hash, key, value, null)))
// 如果使用CAS插入元素时,发现已经有元素了,则进入下一次循环,重新操作
// 如果使用CAS插入元素成功,则break跳出循环,流程结束
break; // no lock when adding to empty bin
}
else if ((fh = f.hash) == MOVED)
// 如果要插入的元素所在的tab的第一个元素的hash是MOVED,则当前线程帮忙一起迁移元素
tab = helpTransfer(tab, f);
else {
// 如果这个tab不为空且不在迁移元素,则锁住这个tab(分段锁)
// 并查找要插入的元素是否在这个tab中
// 存在,则替换值(onlyIfAbsent=false)
// 不存在,则插入到链表结尾或插入树中
V oldVal = null;
synchronized (f) {
// 再次检测第一个元素是否有变化,如果有变化则进入下一次循环,从头来过
if (tabAt(tab, i) == f) {
// 如果第一个元素的hash值大于等于0(说明不是在迁移,也不是树)
// 那就是tab中的元素使用的是链表方式存储
if (fh >= 0) {
// tab中元素个数赋值为1
binCount = 1;
// 遍历整个tab,每次结束binCount加1
for (Node<K,V> e = f;; ++binCount) {
K ek;
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
// 如果找到了这个元素,则赋值了新值(onlyIfAbsent=false)
// 并退出循环
oldVal = e.val;
if (!onlyIfAbsent)
e.val = value;
break;
}
Node<K,V> pred = e;
if ((e = e.next) == null) {
// 如果到链表尾部还没有找到元素
// 就把它插入到链表结尾并退出循环
pred.next = new Node<K,V>(hash, key,
value, null);
break;
}
}
}
else if (f instanceof TreeBin) {
// 如果第一个元素是树节点
Node<K,V> p;
// tab中元素个数赋值为2
binCount = 2;
// 调用红黑树的插入方法插入元素
// 如果成功插入则返回null
// 否则返回寻找到的节点
if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
value)) != null) {
// 如果找到了这个元素,则赋值了新值(onlyIfAbsent=false)
// 并退出循环
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
}
}
// 如果binCount不为0,说明成功插入了元素或者寻找到了元素
if (binCount != 0) {
// 如果链表元素个数达到了8,则尝试树化
// 因为上面把元素插入到树中时,binCount只赋值了2,并没有计算整个树中元素的个数
// 所以不会重复树化
if (binCount >= TREEIFY_THRESHOLD)
treeifyBin(tab, i);
// 如果要插入的元素已经存在,则返回旧值
if (oldVal != null)
return oldVal;
// 退出外层大循环,流程结束
break;
}
}
}
// 成功插入元素,元素个数加1(是否要扩容在这个里面)
addCount(1L, binCount);
// 成功插入元素返回null
return null;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# 初始化数组
使用CAS控制只有一个线程初始化tab数组;
private final Node<K,V>[] initTable() {
Node<K,V>[] tab; int sc;
while ((tab = table) == null || tab.length == 0) {
if ((sc = sizeCtl) < 0)
// 如果sizeCtl<0说明正在初始化或者扩容,让出CPU
Thread.yield(); // lost initialization race; just spin
else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
// 如果把sizeCtl原子更新为-1成功,则当前线程进入初始化
// 如果原子更新失败则说明有其它线程先一步进入初始化了,则进入下一次循环
// 如果下一次循环时还没初始化完毕,则sizeCtl<0进入上面if的逻辑让出CPU
// 如果下一次循环更新完毕了,则table.length!=0,退出循环
try {
// 再次检查table是否为空,防止ABA问题
if ((tab = table) == null || tab.length == 0) {
// 如果sc为0则使用默认值16
int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
// 新建数组
@SuppressWarnings("unchecked")
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
// 把tab数组赋值给table
table = tab = nt;
// 设置sc为数组长度的0.75倍
// n - (n >>> 2) = n - n/4 = 0.75n
// 可见这里装载因子和扩容门槛都是写死了的
// 这也正是没有threshold和loadFactor属性的原因
sc = n - (n >>> 2);
}
} finally {
// 把sc赋值给sizeCtl,这时存储的是扩容门槛
sizeCtl = sc;
}
break;
}
}
return tab;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
# 协助扩容
- 对 table、node 节点、node 节点的 nextTable,进行数据校验;
- 根据数组的length得到一个标识符号;
- 进一步校验 nextTab、tab、sizeCtl 值,如果 nextTab 没有被并发修改并且 tab 也没有被并发修改,同时
sizeCtl < 0
,说明还在扩容; - 对 sizeCtl 参数值进行分析判断,如果不满足任何一个判断,将
sizeCtl + 1
, 增加了一个线程帮助其扩容;
final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
Node<K,V>[] nextTab; int sc;
// 如果tab数组不为空,并且当前tab第一个元素为ForwardingNode类型,并且nextTab不为空
// 说明当前tab已经迁移完毕了,才去帮忙迁移其它tab的元素
// 扩容时会把旧tab的第一个元素置为ForwardingNode,并让其nextTab指向新tab数组
if (tab != null && (f instanceof ForwardingNode) &&
(nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
int rs = resizeStamp(tab.length);
// sizeCtl<0,说明正在扩容
while (nextTab == nextTable && table == tab &&
(sc = sizeCtl) < 0) {
if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
sc == rs + MAX_RESIZERS || transferIndex <= 0)
break;
// 扩容线程数加1
if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
// 当前线程帮忙迁移元素
transfer(tab, nextTab);
break;
}
}
return nextTab;
}
return table;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# 扩容判断
- CAS更新baseCount的值;
- 检查是否需要扩容,默认check = 1,需要检查;
- 如果满足扩容条件,判断当前是否正在扩容,如果是正在扩容就一起扩容;
- 如果不在扩容,将sizeCtl更新为负数,并进行扩容处理;
private final void addCount(long x, int check) {
CounterCell[] as; long b, s;
// 先尝试把数量加到baseCount上,如果失败再加到分段的CounterCell上
if ((as = counterCells) != null ||
!U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
CounterCell a; long v; int m;
boolean uncontended = true;
if (as == null || (m = as.length - 1) < 0 ||
(a = as[ThreadLocalRandom.getProbe() & m]) == null ||
!(uncontended =
U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
fullAddCount(x, uncontended);
return;
}
if (check <= 1)
return;
// 计算元素个数
s = sumCount();
}
//检查是否需要扩容,默认check=1,需要检查
if (check >= 0) {
Node<K,V>[] tab, nt; int n, sc;
// 如果元素个数达到了扩容门槛,则进行扩容
// 注意,正常情况下sizeCtl存储的是扩容门槛,即容量的0.75倍
while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
(n = tab.length) < MAXIMUM_CAPACITY) {
// rs是扩容时的一个标识
int rs = resizeStamp(n);
if (sc < 0) {
// sc<0说明正在扩容中
if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
transferIndex <= 0)
// 扩容已经完成了,退出循环
break;
// 扩容未完成,则当前线程加入迁移元素中
// 并把扩容线程数加1
if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
transfer(tab, nt);
}
else if (U.compareAndSwapInt(this, SIZECTL, sc,
(rs << RESIZE_STAMP_SHIFT) + 2))
// 进入迁移元素
transfer(tab, null);
// 重新计算元素个数
s = sumCount();
}
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49